

Welcome

Project Team

Mike Trotter
Jon Hunt

Project Manager
Senior Transport Modeller

Background and Objectives

- 1. Study Background
- 2. Transport Modelling
- 3. The Elgin Model
- 4. Calibration and Validation
- 5. Base Model Output
- 6. Model Uses
- 7. Summary
- 8. Questions and Answers

Study Background

Framework awarded to Halcrow Feb 06

- General call off contract to assist TMC with any Transportation related issues
- Construct a Transport Model Elgin/Moray
- Undertake a STAG appraisal for Elgin

What are Transport Models?

 Transport Models are simplifications of a particular aspect of travel behaviour

Purpose of Transport Modelling

- To replicate travel behaviour now in order to predict what might happen in the future
- To understand future impacts of growth, land use change and development
- To assess implications of alternative transport packages and strategies
- To provide outputs for appraisal

Transport Modelling

Advantages of using a Transport Model

- Model runs much faster than real-time
- Does not disrupt real network
- Simply enables the optimum design to be found
- Provides easy to understand outputs (videos etc)

29 Aug 2006

Elgin Model

What software is used for the Elgin model?

The model software selected is known as "Vissim".

- State of the art 'microsimulation' model
- Can be integrated with public transport and land use models
- Accurately simulates the interaction between individual vehicles (lane changing, vehicle following and gap acceptance)
- Good at modelling roundabouts and many other traffic engineering features
- Wide range of output available for use in assessments

The Elgin Model

How was the Elgin model built?

Major roads and junctions modelled

 Study area divided into a large number of homogenous origin and destination zones

- Three time periods modelled
 - AM weekday peak
 - PM weekday peak
 - Saturday peak

Traffic Inputs to the Model

Road side interviews

On site observations (queues etc)

Traffic surveys of private cars and goods vehicles

Other Data

Journey time surveys

Model Calibration and Validation

<u>Calibration</u> is the process of <u>adjusting</u> the model to ensure that simulated traffic flows, routes and travel behaviour correspond with observed behaviour.

<u>Validation</u> is checking model output against an <u>independently</u> observed set of data to ensure that the calibrated model is robust.

Model Calibration and Validation

 Best practice guidelines require 85% of all surveyed links to be within calibration targets.

Elgin model (am peak): 97%

Elgin model (pm peak): 94%

 Best practice guidelines require 85% of all journey time routes to be within validation targets.

Elgin model (am peak): 100%

Elgin model (pm peak): 100%

Saturday model is currently under development

29 Aug 2006

Model Calibration and Validation

Model considerations...

 The model development is robust and suitable for detailed scheme design, assessment and optimisation.

However...

- Traffic flows and journey times can fluctuate daily by up to 20%
- The model will require maintenance (updating) as Elgin roads infrastructure/traffic patterns change

Base Model Output

 Excellent representation of traffic movements throughout Elgin

Realistic simulation of existing conditions at key junctions.

Bus services modelled accurately

Level crossing operation at The Wards

Model Uses

How can we use the Elgin model to assist in future planning?

- Future scenario testing:
 - Traffic growth e.g. A96
 - Changes to infrastructure e.g. road closures
 - Transport strategies e.g. TM designs
- Evaluation & Appraisal
 - Quantify benefits or disbenefits e.g. Bypass
 - Optimise operation of new schemes
 - Assist with the STAG appraisal

Model Uses

- Problem Identification
- Objective Setting
- Option Generation
- STAG Part 1
- STAG Part 2 <=> Transport Model input
- Conclusion

29 Aug 2006

Summary

- Transport Modelling
- The Elgin Model
- Future Uses

Model Network and Zones

continue

29 Aug 2006

Elgin Model

Junction Turning Count

Alexandra Road / North Street 730am to 930am

29 Aug 2006 Elgin Model

Road Side Interviews

continue

On-site Observations

continue

29 Aug 2006

Elgin Model

Calibration Data

continue

AM Peak Screenline / Cordon Calibration Data

Elgin VISSIM Model 10/08/2006

	Total Volume:
Outer Cordon	VALIDATED
Inner Cordon	VALIDATED
Eastern Screenline	VALIDATED
Vestern Screenline	VALIDATED
River Screenline	VALIDATED
Railway Screenline	VALIDATED

Screenline Outer Cordo

Screenline Inner Cordo

	18.	· ·	Inbo	ound	
Screenline	Site	observed	modelled	difference	GEH
Outer Cordon	A941 to/from Lossiemouth	783	785	-2	0.07
	Calcots Road	50	47	3	0.43
	A96 Barmuckity	1621	1687	-66	1.62
	Linkwood Road	186	188	-2	0.15
	A941 New Elgin	574	567	7	0.29
	B9010 Pluscarden Road	200	228	-28	1.91
	A96 west of Elgin	1337	1371	-34	0.92
	B9012 Duffus Road	165	161	4	0.31
	Totals	4916	5034	-118	1.67

	lotal Y	olume:	
Outer Cordon	VALIE	ATED	
Inner Cordon	VALIE	ATED	
Eastern Screenline	VALID	ATED	
¥estern Screenline	VALIE	ATED	
River Screenline	VALIDATED		
Railway Screenline	VALIE	ATED	

Screenline									
Eastern Screenli	A36 South College Street	1316	1321	-5	0.14	1065	1057	8	0.25
	Maisondieu Road	749	742	7	0.26	652	564	88	3.57
	Linkwood Road	576	560	16	0.67	308	330	-22	1.23
	Thornhill Road	292	278	14	0.83	265	248	17	1.06
	Totals	3393	3338	55	0.95	2742	2598	144	2.79

		Inbound					
	Site	observed	modelled	difference	GEH		
Screenline	B3012 Duffus Road	165	161	4	0.31		
Western Screenli	Morriston Road	333	327	6	0.33		
	A36 West Road	1382	1393	-11	0.30		
	B3010 Pluscarden Road	200	228	-28	1.91		
	Totals	2080	2109	-29	0.63		

Outbound				
observed	modelled	difference	GEH	
110	153	-43	3.75	
343	330	13	0.71	
1158	1125	33	0.98	
130	135	-5	0.43	
1741	1743	-2	0.05	

		Inbound				
	Site	observed	modelled	difference	GEH	
Screenline	Morriston Road	343	330	13	0.71	
River Screenline	A341 North Street	1051	1086	-35	1.07	
	Pansport Road	808	732	76	2.74	
	Totals	2202	2148	54	1.16	

Outbound			
obserred	modelled	difference	GEH
333	327	6	0.33
1025	1110	-85	2.60
510	499	11	0.49
1868	1936	-68	1.56

		Inbound			
	Site	obserred	modelled	difference	GEH
Screenline	B3010 Pluscarden Road	200	228	-28	1.91
Railway Screenlin	The Wards	418	455	-37	1.77
	A941 Railway Bridge	1613	1614	-1	0.02
	Ashgrove Road	124	135	-11	0.97
	Reiket Lane	262	256	6	0.37
	Totals	2617	2688	-71	1.38

Outbound				
obserred	modelled	difference	GEH	
130	135	-5	0.43	
418	473	-55	2.61	
977	1084	-107	3.33	
220	227	-7	0.47	
308	285	23	1.34	
2053	2204	-151	3,27	

Level crossing at The Wards continue

29 Aug 2006

Investment costs Developer Contributions Grant/Subsidy Payments Indirect Tax Revenues NET IMPACT	781719 0 0 -73357 708362	0 0 0 -73357
TOTAL TOTAL Present Value of Costs (PVC)	708362	
Note: Costs appear as positive numbers Note: All entries are present values o	s, while revenu discounted to 20	nes and developer contributions appear as negative numbers.
Analysis of Monetised Costs and Benefits		
Non-Exchequer Impacts Consumer User Benefits Business User Benefits Private Sector Provider Impacts Other Business Impacts	236420 395148 0 0	
Accident Benefits Not assess	sed by TUBA	
Net present Value of Benefits (PVB)	631568	
Local Government Funding Central Government Funding	0 708362	
Net present Value Costs (PVC)	708362	
Overall Impact Net present Value (NPV) Benefit to Cost Ratio (BCR)	-76794 0.892	
Appraisal Period 20	021 to 2080	

Note: There may also be other significant costs and benefits, some of which cannot be presented in monetised form. Where this is the case, the analysis presented above does NOT provide a good measure of value for money and should not be used as the sole basis for decisions.